The ML engine for OpenAdapt -- open-source desktop automation with demo-conditioned AI agents.
OpenAdapt-ML provides the GUI-specific ML layer for training and running vision-language model (VLM) agents that automate desktop tasks. It handles everything between raw screen recordings and a production policy API: canonical schemas for GUI trajectories, VLM adapters, supervised fine-tuning with TRL + Unsloth, grounding, and demo-conditioned inference.
Synthetic Login -- Qwen3-VL-2B fine-tuned on synthetic UI scenarios:
- GUI trajectory schemas -- Pydantic models for Episodes, Steps, Actions, and Observations with JSON Schema export and format converters (WAA, WebArena)
- VLM adapters -- Unified interface for Qwen3-VL, Qwen2.5-VL, Claude, GPT, and Gemini with automatic device selection (CUDA / MPS / CPU)
- Supervised fine-tuning -- TRL SFTTrainer with Unsloth optimizations for 2x faster training and 50% less VRAM via LoRA adapters
- Runtime policy API --
AgentPolicythat predicts the next GUI action (CLICK,TYPE,DONE) from a screenshot and goal - Demo-conditioned inference -- Retrieval-augmented prompting using recorded demonstrations for trajectory-conditioned disambiguation
- Grounding module -- Locate UI elements via Gemini vision API, oracle bounding boxes, or Set-of-Marks (SoM) overlays
- Cloud GPU training -- One-command training pipelines for Lambda Labs and Azure
- Synthetic data generation -- Configurable UI scenarios (login, registration) with layout jitter for rapid iteration
# Core package
pip install openadapt-ml
# With training dependencies (TRL + datasets)
pip install openadapt-ml[training]
# With API-backed VLMs (Claude, GPT)
pip install openadapt-ml[api]
# Development (from source)
git clone https://github.com/OpenAdaptAI/openadapt-ml.git
cd openadapt-ml
uv sync# Model-free policy demo (no GPU required)
uv run python -m openadapt_ml.scripts.demo_policy --backend dummy# Fine-tune Qwen3-VL on synthetic login scenario
uv run python -m openadapt_ml.scripts.train \
--config configs/qwen3vl_synthetic.yaml# Record a workflow with openadapt-capture, then train
uv run python -m openadapt_ml.scripts.train \
--config configs/qwen3vl_capture.yaml \
--capture ~/captures/my-workflow \
--open # Opens training dashboard in browseruv run python -m openadapt_ml.scripts.run_qwen_login_benchmark \
--config configs/qwen3vl_synthetic_dev.yaml \
--out-dir experiments/qwen_login/2b_devfrom openadapt_ml.runtime.policy import AgentPolicy
from openadapt_ml.models.qwen_vl import QwenVLAdapter
adapter = QwenVLAdapter(model_name="Qwen/Qwen3-VL-2B-Instruct")
policy = AgentPolicy(adapter)
# Given an SFT-style sample (screenshot + goal + chat history):
output = policy.predict(sample)
print(output.action) # Action(type=CLICK, coordinates={"x": 0.45, "y": 0.71})
print(output.thought) # "Click the Login button"from openadapt_ml.schema import Episode, Step, Action, Observation, ActionType
episode = Episode(
episode_id="demo_001",
instruction="Open Notepad and type Hello World",
steps=[
Step(
step_index=0,
observation=Observation(screenshot_path="step_0.png"),
action=Action(type=ActionType.CLICK, coordinates={"x": 100, "y": 200}),
),
Step(
step_index=1,
observation=Observation(screenshot_path="step_1.png"),
action=Action(type=ActionType.TYPE, text="Hello World"),
),
],
success=True,
)openadapt_ml/
├── schema/ # Episode, Step, Action, Observation (Pydantic models)
│ ├── episode.py # Core dataclasses + JSON Schema export
│ └── converters.py # WAA/WebArena format converters
├── models/ # VLM adapters
│ ├── base_adapter.py # BaseVLMAdapter ABC
│ ├── qwen_vl.py # Qwen3-VL, Qwen2.5-VL
│ ├── api_adapter.py # Claude, GPT (inference-only)
│ └── dummy_adapter.py # Fake adapter for testing
├── training/ # Fine-tuning pipeline
│ ├── trl_trainer.py # TRL SFTTrainer + Unsloth
│ ├── trainer.py # Training orchestration
│ └── viewer.py # Training dashboard (HTML)
├── runtime/ # Inference
│ ├── policy.py # AgentPolicy (screenshot -> action)
│ └── safety_gate.py # Action safety checks
├── datasets/ # Data loading
│ └── next_action.py # Episodes -> SFT chat samples
├── ingest/ # Data ingestion
│ ├── synthetic.py # Synthetic UI generation
│ ├── capture.py # openadapt-capture loader
│ └── loader.py # Generic episode loader
├── grounding/ # UI element localization
│ ├── base.py # OracleGrounder, GroundingModule ABC
│ └── detector.py # GeminiGrounder, SoM overlays
├── retrieval/ # Demo-conditioned inference
│ ├── retriever.py # Demo retrieval for RAG prompting
│ └── embeddings.py # Screenshot/action embeddings
├── benchmarks/ # ML-specific benchmark agents
│ └── agent.py # PolicyAgent, APIBenchmarkAgent, UnifiedBaselineAgent
├── cloud/ # Cloud GPU training
│ ├── lambda_labs.py # Lambda Labs integration
│ ├── local.py # Local training (CUDA/MPS)
│ └── ssh_tunnel.py # SSH tunnel management
├── segmentation/ # Recording segmentation pipeline
├── evals/ # Evaluation metrics (grounding, trajectory matching)
├── config.py # Settings via pydantic-settings
└── scripts/ # CLI entry points (train, eval, compare, demo)
| Metric | Score |
|---|---|
| Action Type Accuracy | 100% |
| Element Accuracy | 100% |
| Episode Success Rate | 100% |
| Model | Action Accuracy | Coord Error | Click Hit Rate |
|---|---|---|---|
| Qwen3-VL-2B FT | 0.469 | 0.051 | 0.850 |
| Qwen3-VL-8B FT | 0.286 | 0.004 | 1.000 |
| Claude Sonnet 4.5 | 0.121 | 0.757 | 0.000 |
| GPT-5.1 | 0.183 | 0.057 | 0.600 |
These are results on a controlled synthetic benchmark with ~3 UI elements. They validate that the training pipeline works, not real-world performance. Evaluation on standard benchmarks (WAA, WebArena) is ongoing via openadapt-evals.
export LAMBDA_API_KEY=your_key_here
# One-command: launch, train, download, terminate
uv run python -m openadapt_ml.cloud.lambda_labs train \
--capture ~/captures/my-workflow \
--goal "Turn off Night Shift in System Settings"uv run python -m openadapt_ml.cloud.local train \
--capture ~/captures/my-workflow --openOpenAdapt-ML is one component in the OpenAdapt stack:
| Package | Purpose |
|---|---|
| openadapt-ml | ML engine: schemas, VLM adapters, training, inference, grounding |
| openadapt-evals | Evaluation infrastructure: VM management, pool orchestration, benchmark runners, oa-vm CLI |
| openadapt-capture | Lightweight GUI recording and demo sharing |
| OpenAdapt | Desktop automation platform (end-user application) |
Looking for benchmark evaluation, Azure VM management, or the
oa-vmCLI? Those live in openadapt-evals.
docs/design.md-- System design (schemas, adapters, training, runtime)docs/cloud_gpu_training.md-- Lambda Labs and Azure training guidedocs/qwen_login_experiment.md-- Synthetic benchmark reproductiondocs/gemini_grounding.md-- Grounding module documentation
# Clone and install dev dependencies
git clone https://github.com/OpenAdaptAI/openadapt-ml.git
cd openadapt-ml
uv sync --extra dev --extra training
# Run tests
uv run pytest
# Lint
uv run ruff check .We use Angular-style commits (feat:, fix:, docs:, etc.) with Python Semantic Release for automated versioning and PyPI publishing.

